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The problem of transport in quasi-one dimensional periodic structures has been studied 

recently by several groups [1-4]. Using the concept of “entropy barrier” [5] one can classify 

such structures based on the height of the entropy barrier. Structures with high barriers are 

formed by chambers, which are weakly connected with each other because they are 

connected by small apertures. To escape from such a chamber a diffusing particle has to 

climb a high entropy barrier to find an exit that takes a lot of time [6]. As a consequence, 

the particle intra-chamber lifetime, 

! 

"
esc

, is much larger than its intra-chamber equilibration 

time, 

! 

"
rel

, 

! 

"
esc

>> "
rel

. When the aperture is not small enough, the intra-chamber escape and 



relaxation times are of the same order and the hierarchy fails. This is the case of low 

entropy barriers. Transport in this case is analyzed in Refs. [1-3], while Ref. [4] is devoted 

to diffusion in the case of high entropy barriers. 

 

In this paper we study diffusion in a tube formed by periodic contacting spherical cavities 

of radius, 

! 

R, (Fig. 1) over the entire range of the entropy barrier height. On times when the 

mean squared displacement of a diffusing particle is much greater than the tube period, 

! 

l, 

the particle motion can be characterized by an effective diffusion constant, 

! 

Deff , which is 

smaller than the particle diffusion constant, 

! 

D, in space with no constrains. When the tube 

period increases, the radius 

! 

a  of the circular aperture connecting neighboring cavities 

decreases, 

! 

a = R
2
" (l

2
/4) , 

! 

0 < l < 2R. As a result, the entropy barrier increases, and the 

ratio 

! 

Deff /D gets smaller. One can find 

! 

Deff  analytically for high and low entropy barriers. 

For high entropy barriers 

! 

Deff  has been derived in Ref. [4]. Here we derive 

! 

Deff  for low 

entropy barriers. We also run Brownian dynamics simulations to find 

! 

Deff  as a function of 

the ratio 

! 

a /R and to compare the numerical results with those predicted by different 

analytical expressions. The major goal of our analysis is to establish the range of 

applicability of different approximate expression for 

! 

Deff .  

 

For high entropy barriers (small apertures, 

! 

a << R) Berezhkovskii, Zitserman, and 

Shvartsman (BZS) derived the following expression for the effective diffusion constant, 

! 

Deff

BZS
=
6Da

"R
     (1) 



In the opposite limiting case of low entropy barrier, i.e., when 

! 

(R " a) << R, one can find 

! 

Deff  by approximately reducing the three-dimensional problem of diffusion in the tube of 

varying cross section to an effective one-dimensional problem of diffusion along the tube 

axis. Significant progress in understanding the reduction has been made in recent years [5, 

7-9]. Directing the x-axis along the center line of the tube one can write an approximate 

one-dimensional effective diffusion equation as 

! 

"c(x, t)

"t
=
"

"x
D(x)A(x)

"

"x

c(x, t)

A(x)
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 ,   (2) 

where D(x) is a position-dependent diffusion coefficient, 2)]([)( xrxA !=  is the cross-

section area of the tube of radius 

! 

r(x) , and 

! 

c(x, t)  is the effective one-dimensional 

concentration of the diffusing particles at given 

! 

x , which is related to the three-dimensional 

concentration 

! 

C(x,y,z,t)  by  

! 

c(x, t) = C(x,y,z,t)dydz
A(x )

" .    (3) 

Equation (2) with position-independent diffusion coefficient, 

! 

D(x) = D , is known as the 

Fick-Jacobs equation [10]. Zwanzig (Zw) derived an expression for 

! 

D(x) assuming that the 

tube radius, 

! 

r(x) , is a slowly varying function, 

! 

" r (x) <<1, [5],  

! 

D
Zw
(x) =

D

1+ " r (x)
2
/2

.                (4) 

Reguera and Rubí (RR) generalized this result [7]. Based on heuristic arguments they 

suggested  

! 

D
RR
(x) =

D

1+ " r (x)
2

      (5) 

 



Equation (2) can be considered as the Smoluchowski equation for diffusion in the entropy 

potential 

! 

U(x) defined as 

! 

U(x) = "k
B
T ln

A(x)

A(x0)
,    (6) 

where 

! 

k
B

 and 

! 

T  are the Boltzmann constant and the absolute temperature, and 

! 

U(x) at 

! 

x = x
0
 is taken to be zero, 

! 

U(x
0
) = 0. Potentials 

! 

U(x) with high and low entropy barriers 

are shown in Fig. 1. Since our system is periodic, it follows from Eqs. (4)-(6) that both 

! 

U(x) and 

! 

D(x) are periodic functions of 

! 

x , 

! 

U(x + l) =U(x)  and 

! 

D(x + l) = D(x) . 

Therefore, we can find 

! 

Deff  using the Lifson-Jackson formula [11], which is an exact result 

for the one-dimensional Smoluchowski equation with periodic 

! 

U(x) and 

! 

D(x). According 

to this formula  

! 

Deff  is given by 

! 

Deff

"1
= D(x)A(x)[ ]

"1
A(x) ,    (7) 

where 

! 

f (x) =
1

l
f (x)dx

0

l

" . We use Eq. (7) to obtain three different expressions for 

! 

Deff .  

 

Assuming that 

! 

D(x) = D  we find 

! 

Deff

FJ , which corresponds to the Fick-Jacobs (FJ) equation, 

! 

D

Deff

FJ
=

1

A(x)
A(x) =

2 + (a /R)
2

6 1" (a /R)
2
ln
1+ 1" (a /R)

2

1" 1" (a /R)
2

.  (8) 

 

Using 

! 

D
Zw
(x) , Eq. (4), we obtain 

! 

Deff

Zw  given by 

! 

D

Deff

ZW
=

D

Deff

FJ
+
1

2

" r (x)
2

A(x)
A(x) =

2 + (a /R)
2

12
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2
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            (9) 



Respectively, 

! 

D
RR
(x) in Eq. (5) leads to 

! 

Deff

RR  given by 

! 

D

Deff

RR
=

1" # r (x)
2

A(x)
A(x) =

2

3(a /R)
.           (10) 

The results in Eqs. (8)-(10) were obtained assuming that the entropy barrier is low and the 

difference 

! 

R " a is small compared to 

! 

R. It is interesting to compare the behavior predicted 

by these equations in the opposite limit when 

! 

a" 0 and the entropy barrier is high, with 

! 

Deff

BZS  in Eq. (1), which is asymptotically exact in this limit. Comparison shows that 

! 

Deff

FJ
/Deff

BZS
"#, 

! 

Deff

Zw
/Deff

BZS
" 0, 

! 

Deff

RR
/Deff

BZS
"# /4 . Thus, 

! 

Deff

RR  in Eq. (10) is a good 

candidate for a unique formula that covers the entire range of 

! 

a /R, 

! 

0 < a /R <1, while both, 

! 

Deff

FJ  and 

! 

Deff

Zw  fail as 

! 

a /R" 0 . 

 

We compare different expressions for 

! 

Deff , Eqs. (1), (8)-(10), with 

! 

Deff

sim  found in Brownian 

dynamics simulations. Numerically we compute the mean squared displacement along the 

channel axis of 

! 

2.5 "10
4  particles as a function of time, 

! 

"x
2
(t) = x(t) # x(0)[ ]

2 , 

assuming that the particle starting points are uniformly distributed over the cavity. We 

determine 

! 

Deff

sim  from the long-time behavior of 

! 

"x
2
(t) . The results presented in Fig. 2 

show that 

! 

Deff

sim  is in excellent agreement with 

! 

Deff

BZS  for 

! 

a /R < 0.1, reasonably well 

described by both 

! 

Deff

BZS  and 

! 

Deff

RR  for 

! 

a /R = 0.2; and close to 

! 

Deff

RR  for 

! 

a /R " 0.3. 

 

To summarize, 

! 

Deff

RR  in Eq. (10) found on the basis of the generalized Fick-Jacobs equation, 

Eq. (2), with 

! 

D(x) given by the Reguera-Rubí formula, Eq. (5), provides a reasonably good 

approximation for 

! 

Deff  over the entire range of the size of the aperture. For small windows 



(high entropy barriers) 

! 

Deff

sim  found numerically is in excellent agreement with 

! 

Deff

BZS  in Eq. 

(1). We hope that the results of our analysis will be of use when interpreting experiments 

on controlled drug release and migration in porous media. 
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 Figure Captions 

 

Figure 1. Entropy potential for tubes with 

! 

(a /R) = 0.1 (panel(a)) and 

! 

(a /R) = 0.5  

(panel(b)). The dimensionless heights of the entropy barriers, respectively, are 

! 

"U /(k
B
T) = 2ln10 # 4.6  (panel(a)) and 

! 

"U /(k
B
T) = 2ln2 #1.4  (panel(b)). 

 

Figure 2. Effective diffusion constants found numerically (circles) and 

predicted by Eqs. (1), (8)-(10) (solid curves). The insert shows the ratio of 

! 

Deff

BZS  and 

! 

Deff

RR  predicted by Eqs. (1) and (10), respectively, to 

! 

Deff

sim , from 

! 

(a /R) = 0.025  to 

! 

(a /R) = 0.3. 
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